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1. Introduction

A matching in a graph G is a set of lines, no two of which share
a common point. A matching is perfect if it spans V(G). The prob-
lem of finding a matching of maximum cardinality in a graph models
a number of significant real-world problems and, in addition, is of con-
siderable mathematical interest in its own right. Matchings are in a sense
among the best understood graph-theoretic objects: there exist efficient
algorithms to find and good characterizations for the existence of perfect
matchings and for the maximum weight of a matching; there are nice
descriptions of polyhedra associated with matchings; good bounds and,
for a few special classes, exact formulas for the number of perfect match-
ings in a graph. But there are many important questions that remain un-

o - answered. What is the number of perfect matchings in a general graph?
Which graphs can be written as the disjoint union of perfect matchings

l i (i.e., which r-regular graphs are r-line-colorable)? How does one generate
Z . o a random perfect matching? Matching theory has often been in the front

lines of research in graph theory and many results in matching theory
have served as pilot results for new branches of study in combins'torics

3, (e.g., minimax theorems, good characterizations and polyhedral descrip-
tions).-

While some of the open "matching" problems mentioned above are
NP-hard (for example, the enumeration of perfect matchings [VJ and
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the line-coloring problem [H]), there are others the polynomial-time sol-
vability of which have been established only recently and not without
considerable difficulty.

In this paper the continuing development of a canonical decomposi-
tion theory for graphs in terms of their matchings plays a central role.
Using results of Gallai [Gi, G2] and, independently, Edmonds [El] which
describe how to canonically decompose any graph in terms of the maxi-
mum matchings it contains, one can, in a sense, reduce the decomposition
theory to the special case when the graph has a perfect matching.

Unfortunately, if the graph G in question has a perfect matching,
the Gallai-Edmonds procedure gives no information.

Kotzig [KI, K2, K3] began to develop a method of decomposing
graphs with perfect matchings in the late 1950's. This procedure was
extended by Lovisz [Ll] and by Lov~sz and Plummer [LP1]. The building
blocks which emerged from this procedure are the 3-connected bicritical
graphs - or bricks. (A graph G is bicritical if G - u - v has a perfect
matching for all choices of distinct points u, v E V(G).) This procedure
will be called the Brick Decomposition Procedure, or simply BDP.

In Section 2 of the present paper, the main result presented is a
description of the matching lattice; i.e., the lattice generated by the
incidence vectors of perfect matchings of a graph. This in turn yields
a good characterization of the number of perfect matchings linearly
independent over various fields. The BDP will be seen to play a vital
role in the determination of the matching lattice.

The BDP, however, comes to an abrupt halt when the graph G is
itself a brick. A method for decomposing bricks is currently unknown.

In Section 3 we describe another approach motivated by the desire
to better understand the structure of bricks. If IV(G) I _ 2n + 2 > 4, we
say that graph G is n-extendable if every matching of cardinality n is
a subset of a perfect matching. In [P1] it was shown that, in particular,
a 2-extendable graph which is not bipartite must be a brick. This fact,
coupled with the fact that as long as n > 2, an n-extendable graph G o'
must also be (n - 1)-extendable, gives us an interesting nested family of ,&'
subsets of bricks to study. Some results obtained relating n-extendability * d

and such other graphical invariants as connectivity, toughness and genus . .

are presented.
For any terminology not defined here, as well as more detailed infor- ... 1-14

mation on the Gallai-Edmonds decomposition and the BDP, the reader .__
is referred to [LP3]. e'4 Cjes
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2. THE BDP AND THE MATCHING LATTICE 3

2. The BDP and the Matching Lattice

We begin by sketching the BDP. It is best understood if we recall
the classical theorem of Tutte [T].

2.1. THEOREM. A graph G has a perfect matching if and only if
for every X 9_ V(G), the number of odd components of G - X is at most
Ixl.

Tutte's Theorem is a very powerful tool, for example, in proving the
sufficiency of certain conditions for the existence of a perfect matching.
However, it does not answer questions about how many perfect match-
ings a given graph has, how these are distributed, which lines occur in
perfect matchings, etc. The present decomposition theory starts with the
observation that if we delete all lines from a graph which do not occur
in perfect matchings, the set of perfect matchings clearly is not changed.
Moreover, if the graph has several connected components, then its per-
fect matchings are composed of perfect matchings of these components.
Hence from now on, we shall restrict our attention to connected graphs
with the property that every line is contained in some perfect matching.
Such graphs have been variously called matching-covered graphs [L2],
U-graphs IN] and 1-extendable graphs [P1]. We shall adopt the last
of these three names in the present paper.

Let G be a 1-extendable graph. A subset B C V(G) is called a
barrier if it gives equality in Tutte's condition; i.e., if G - B has exactly
[BI odd components. (Note that trivially G - B has at most IBI odd
components since G has a perfect matching.) From the hypothesis that
G is 1-extendable, it also follows that if G - B has exactly IBI odd
components then it has no even ones, and furthermore no line of G joins
two points of B.

Define two points x and y in G to be equivalent if G - x - y has
no perfect matching. Kotzig [K1, K2, K3] and Lov6sz [L1] proved the
following result concerning this relation.

2.2. THEOREM. If G is 1-eztendable then the equivalence of points
is an equivalence relation. The equivalenme classes of this relation are
barriers and every barrier of G is contained in one of these equivalence
classes.

We call the partition defined by this equivalence relation the canoni-
cal partition of the graph G. Note that the canonical partition is the
discrete partition if and only if G - x - y has a perfect matching for every
two points x and y. This is equivalent to saying that no barrier has more
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than one element. We recognize such graphs to be precisely the so-called
bicritical graphs defined in the Introduction.

If B is a barrier then we can decompose G into IBI pieces as follows.
For each (odd) component H of G-B, let H I denote the graph obtained
from G by deleting all the other components of G - B and shrinking B
to a single point. It is easy to see that the graphs H' are 1-extendable
and that each perfect matching in G yields a unique perfect matching in
each of the graphs H1. For the problems mentioned above (the matching
lattice, etc.) it is usually a routine step to prove the results for G if they
are already established for each of the pieces H'.

If the pieces H' are not bicritical (i.e., if they contain non-trivial
barriers) then we can continue to decompose the H 's recursively until
we end up with a list of bicritical graphs. (We delete the trivial bicritical
graphs on just two points from this list.)

Presently we can go one small step further. It is trivial to show
that any bicritical graph with at least four points must be 2-connected.
Suppose that G is a bicritical graph which is not 3-connected; that is,
suppose we can write G = GI UG2 where V(G 1)nV(G2) = {u, v}. Now
we separate G, and G2 and add the line uv to each of them (regardless of
whether or not this line was present in G). It is not difficult to show that
this results in two new smaller bicritical graphs. We can continue this
process on each non-3-connected bicritical graph until we end up with a
list of 3-connected bicritical graphs, the so-called bricks. Moreover, we
denote the final list of bricks of G by L(G).

We illustrate the BDP in Figure 2.1. In this example, S 1 = {V, V2 }

and S2 = {V3, v4} are two different equivalence classes (i.e., maximal
barriers) of G.

Presently we do not know how to decompose bricks. We shall see,
however, that several matching properties of graphs can be read off from
their lists of bricks. Note also that the BDP is not unique; that is, one is
free to choose barriers and cutsets in any order. However, the final list
of bricks £(G) turns out to be independent of these choices [L5]:

2.3. THEOREM. The list L(G) of bricks for any 1-extendable graph
G is uniquely determined by G.

To understand the internal structure of the set of perfect matchings,
one often represents them by their incidence vectors. Let .M = Mt(G) C
RE(G) denote the set of incidence vectors of perfect matchings of the

graph G. Much important information is to be found by studying the
convex hull, conv(M), of this set of IE(G)I-dimensional vectors. This
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FIGURE 2.1.

polytope was characterized as the solution set of a system of linear
inequalities by Edmonds [E21:

2.4. THEOREM. The convex hull of incidence vectors of the perfect
matchings in a graph G is the solution set of the following system of
linear equations and inequalities:

LMMMOj



(i) ze _ 0 for every line e,
(ii) E.ev(v). - 1 for every point v,

(iii) I.Ev(s) x. > 1 for every set S C_ V(G), with ISj odd.

Here for every S _ V(G), V(S) denotes the set of lines of G
connecting S to V(G) - S.

It seems perhaps a more immediate question to describe the linear
hull lifnF() over various fields F. In the case of the rational (or, equiv-
alently, the real or the complex) field, linF(M) was characterized by
Naddef [N]. Note that the difference of any two equations in group (ii)
gives a linear relation which is satisfied by every vector in linQ (M). It
is easy to see that if G is bipartite then this yields n - 2 independent
linear relations, while in the non-bipartite case, n - 1 independent linear
relations result. The difficulty is that some inequalities in group (iii)
(possibly even exponentially many) also yield (hidden) linear constraints.
Naddef described how these can be recognized and a maximum indepen-
dent family characterized. We do not formulate his result here because
our approach is different, being based upon the work of Edmonds, Lovasz
and PuUeyblank [ELP], who gave a polynomial-time algorithm to com-
pute ling(A). In that paper the following formula was also derived:

2.5. THEOREM. Let G be a 1-extendable graph. Then:
dim linQ(M(G)) = IE(G)I - IV(G)I + 2- IL(G)I.
The main step in the proof occurs when G itself is a brick. For these

the formula above shows that hidden linear constraints from group (iii)
do not arise; that is, the following is true.

2.6. THEOREM. Let G be a brick. Then a vector z E QE(G) belongs
to lino(M(G)) if and only if

z(V(u))= z(V=v))

for every pair of points u and v in V(G).

The proof of these two results depends heavily on Edmonds' Theorem
2.4, that is, on the ordered structure of Q, and therefore it does not
remain valid if the field Q is replaced by any field of characteristic
different from 0. A different approach [L5], which we shall sketch below,
shows that the two preceding results are still valid if we replace Q by any
field with characteristic different from 2. For fields with characteristic 2,
however, a different formula holds:
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2.7. THEOREM. Let G be a 1-extendable graph and F a field of
characteristic 2. Then if P(G) denotes the subset of L(G) which are
Petersen graphs, we have:

dim linF()(G)) = IE(G)I - IV(G) + 2 -ItL(G)l - IP(G)I.

(Roughly speaking, we lose one dimension for each Petersen graph found
among the bricks.)

These results follow from a description of the (perfect) matching
lattice, rather than from the perfect matching polytope. The (perfect)
matching lattice of G, lat(M(G)) = lat(M), is the lattice generated by
the vectors in M; that is, the set of all linear combinations of vectors in
)4 with integral coefficients.

This lattice arises in a very natural way as a relaxation of the
chromatic index problem. Let G be an r-regular graph. Then clearly
G is r-line-colorable if and only if the vector 1 E RE(G) consisting of
all l's can be written as a linear combination of vectors in )M with non-
negative integral coefficients. If we drop the integrality assumption here,
we obtain a necessary condition for r-line-colorability, which, as pointed
out by Edmonds [E21 is equivalent to checking if JL1 E conv()). On
the other hand, if we drop the non-negativity of the coefficients then we
obtain another necessary condition for r-line-colorability equivalent to
demanding that 1 E lat(M). The Petersen graph shows that this condi-
tion is non-trivial: for the Petersen graph, the first necessary condition
above is satisfied, but not the second.

In describing tne matching lattice, once again it turns out that the
main case to consider is the case when the graph is a brick. We can then
prove the following [L5]:

2.8. THEOREM. Let G be a brick different from the Petersen graph.
Then a vector x E RE(G) belongs to lat(.M(G)) if and only if

(i) z is integral, and
(ii) z(V(u)) = z(V(v)) for every pair of points u and v in V(G).

Using the BDP described above, we obtain a good characterization
for membership in the matching lattice. In fact, the condition of Theorem
2.8 can be checked in polynomial time. From this it is not difficult to
compute a basis in the matching lattice and solve other fundamental
questions concerning lat(M) and linF(M). We shall not go into the details
of this, however, but instead we shall formulate some consequences of
these results.

- - .- re~e* ., #. #'w
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2.9. COROLLARY. Let G be an r-regular brick different from the
Petersen graph. Then 1 E lat(.M(G)).

2.10. COROLLARY. Let G be a graph which is not contractible to
the Petersen graph and suppose z E RE(M). Assume that z is integral
and z E lini{M(G)). Then x E lat(M(G)).

(Note that in particular every planar graph satisfies the hypothesis of
this Corollary.)

2.11. COROLLARY. Let G be any graph and suppose z E RE(M).
Assume that z is even integral and that z E ling(M(G)). Then x E

lat(M(G)).

In a paper on line-coloration of cubic graphs, Seymour [S] studied
properties of so-called r-graphs. A graph G is an r-graph if it is regular
of degree r and for each X C V(G) with IXI odd, IV(X)I > r. It
follows easily from Tutte's Theorem that every connected r-graph is 1-
extendable. The next result is a special case of Corollary 2.10.

2.12. COROLLARY. Let G be an r-graph which is not contractible
to the Petersen graph. Then 1 E lat(M(G)).

Finally, from Corollary 2.11 we have:

2.13. COROLLARY. Let G be an r-graph. Then the vector 2 -

(2, 2,..., 2) E lat(M(G)).

Seymour proved both of these final two results for the case r = 3
and conjectured their validity for general r.

3. Bricks and n-extendable graphs

In Section 2 of this paper we saw how the brick decomposition
procedure can be carried out on an arbitrary 1-extendable graph and
that, in fact, the procedure is "canonical" in the sense that the final
list of bricks so obtained is an invariant of the graph. Furthermore, we
saw how this procedure can be used to obtain the matching ranks of
any 1-extendable graph over the field GF(2) as well as over R. However,
there are bricks having the same numbers of points, lines and ranks (both
real and GF(2)) which have different numbers of perfect matchings. For
example, the two graphs G, and G 2 in Figure 3.1 each have 12 points
and 19 lines. Each is an example of a Halin graph and hence is bicritical
by Theorem 2.2 of [LP2I. (A graph G is a Halin Graph if it can be
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FIGURE 3.1.

expressed as T U C wheie T is a tree having no points of degree 0 or 2
and C is a cycle passing through the endpoints of T so that T U C is
planar.) Thus ra(Gi) = rGF(2)(Gi ) for i = 1, 2 by a theorem of Naddef
and Pulleyblank [NP]. But since each is a brick, the rank of each is
q - p + 1 = 8. However, G 1 has 15 perfect matchings while G 2 has only
14.

The brick decomposition procedure tells us nothing in such a case
and hence it is natural to seek some further decomposition procedure -
this time of the bricks themselves.

This appears to be a very hard problem. We begin this section by
mentioning two properties of bricks derived in [ELP] and [L51 respec-
tively. The proof of Theorem 2.3 of the present paper makes essential
use of the concept of a tight cut. A cutset L of lines in a 1-extendable
graph G is called tight if every perfect matching of G contains exactly
one line of L. A cut is trivial if all its lines meet at one common point.

3.1. THEOREM. A brick contains no non-trivial tight cut.

It is interesting to note that although this result sounds as if its
proof should be one involving only elementary graph-theoretical ideas,
no such proof is known. The proof of the preceding theorem presented
in [ELP] makes essential use of the linear description of PM(G).

We mention next a second property of bricks derived in [L5]. As
usual, denote the complete graph on four points by K4 and notice that
the complement of a six-cycle, C-, is another way to describe the trian-
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gular prism.
A few words are in order to try to place this next result in context.

Let G' be a subgraph of graph G and let P be a path in G. Path P
is called an ear of G' if the endpoints of P lie in V(G'), but no other
points of P belong to V(G'). (In particular, a line e = ab is an ear of G'
if e E E(G) - E(G') and {a, b} C V(G').) An ear is odd if it contains an
odd number of lines.

The next result was proved in [LP1].

3.2. THEOREM. Let G be a 1-extendable graph. Then G contains
a 1-extendable subgraph G' such that G is the union of G' and one or
two odd ears of G'. If two odd ears, then they are point-disjoint.

Note that both K 4 and C suffice to show that the simultaneous
addition of two ears may indeed be necessary.

Given a 1-extendable graph G, a chain of proper subgraphs K 2 C
G1 C ... C Gk-1 C G is an ear decomposition of G if each Gi in
the sequence is 1-extendable and Gi is obtained from Gi-I by adding a
single odd ear or perhaps two point-disjoint odd ears. In addition, we
shall assume that the ear decomposition is as "fine" as possible in the
sense that two odd ears are added only when neither odd ear added by
itself would result in a 1-extendable graph. Since bricks are 3-connected,
the final step in any ear decomposition for G must consist of adding one
or two single lines. We are now prepared to state our next result.

3.3. THEOREM. If G is a brick 34 K 4 or 5-, then the last step in
any ear decomposition of G must consist of adding a single line.

Restated slightly, this theorem says that every brick different from
K 4 or C must contain a line e such that G - e is 1-extendable. Perhaps
this result will turn out to be helpful in induction proofs yet to come
concerning the structure of bricks.

Another approach was begun in [P1]. Let p >_ 4 and n be positive
integers with 1 < n < (p - 2)/2. Call a graph G n-extendable if every
set of n independent lines in G is a subset of a perfect matching. The
family of 1-extendable graphs was the focus of Section 1 of this paper.
The study of n-extendable graphs for values of n > 1 was motivated by
the following results found in [P1].

3.4. THEOREM. If G is 2-extendable then either G is bipartite or

G is bicritical.

LM N
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3.5. THEOREM. If n> I and G isn-extendable, then G is (n+ l)-
connected.

We see immediately therefore that every non-bipartite 2-extendable
graph is a brick. This fact, coupled with the next theorem, shows that
in the case of non-bipartite graphs, as n increases, we obtain a nested
family of subsets of bricks.

3.6. THEOREM. If n > 2 and G is n-extendable, then G is (n- I)-
extendable.

In order to learn more about their structure, some initial studies of
n-extendable graphs vis-i-vis other well-known graphical invariants have
been carried out. The first results we mention might be thought of as
"fine-tuning" the connectivity of an n-extendable graph somewhat. The
proofs may be found in [P3].

3.7. THEOREM. If n > 1 and G is n-extendable and has a point
cutset S with IS = n + 1, then:

(a) S is independent and
(b) if n > 2, G-S has at most n+I components. Moreover, equality

holds iff G = K+1,,+ 1 .

Recall that a graph G is locally connected if the subgraph induced
by the neighborhood F(u) of point u is connected for every u E V(G).

3.8. COROLLARY. If n > 1 and G is both n-extendable and locally
connected, then G is (n + 2)-connected.

Now let us recall that if G 3 KP, the toughness of G, tough(G), is
defined as rmin IS where c(G-S) denotes the number of componentsc(G-S)'
of G - S and the minimum is taken over all cutsets S C V(G). Theorem
3.7 might lead one to conjecture that an n-extendable graph must have
its toughness bounded below (perhaps even by 1), but this is not true. In
[P41 for each n > 1 we constructed n-extendable graphs with arbitrarily
small toughness. Such graphs have large numbers of points as one might
expect, so it is reasonable to amend the question to ask the following.
If p = IV(G)I is there a function f(p) such that if G is f(p)-extendable,
then G is, say, 1-tough? The answer to this question is "yes" as the next
theorem illustrates.

3.9. THEOREM. Let G be a graph with p points and n a positive
integer. Suppose that G is n-extendable, but that tough(G) < 1. Then
n < [P J and this bound is sharp for all n.
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On the other hand, it seems reasonable to expect that sufficiently
large toughness will guarantee n-extendability. In connection with this,
we should mention that in his introductory paper on toughness [C],
Chvatal observed that if a graph G has an even number of points and has
tough(G) > 1, then by Tutte's Theorem, G contains a perfect matching.
If tough(G) > 1, we have the following:

3.10. THEOREM. If G has p points with p even and if n is an
integer such that 1 < n < (p - 2)/2, then if tough(G) > n, graph G is
n-extendable. Moreover this lower bound on tough(G) is sharp for all n.

It is interesting to compare this result with the next theorem due to
Enomoto, Jackson, Katerinis and A. Saito [EJKS]. Recall that for any
integer n > 1 an n-factor of graph G is a spanning subgraph of G in
which the degree of each point is n.

THEOREM. Suppose G is a graph with at least n + 1 points and
suppose that tough(G) > n. Then if nIV(G)l is even, G has an n-factor.

The proofs of Theorems 3.9 and 3.10 may be found in [P4] where we also
showed that Theorem 3.10 and the above result are independent in that
neither implies the other.

The last graphical invariant we mention here in relation to n-ex-
tendability is the genus. In [P2] we obtained the next result.

3.11. THEOREM. No planar graph is 3-extendable.

More recently we proved the following extension to graphs of positive
genus. (See [PSI.) Let - = -I(G) denote the genus of graph G.

3.12. THEOREM. If -y > 0, then G is not L + 48~t_47j- ex-

tendable.

Moreover we exhibited a family of 3-extendable toroidal graphs thus
showing that the bound on extendability of Theorem 3.12 is sharp, at
least when -f = 1. For -y > 2, it is not known if the bound of Theorem
3.12 is best possible.

: ,a , ,,.
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